

NAME: _____ SCIPER: _____

This exam is open book and open notes, but no computers are allowed.

Please answer all questions. Values of each question are given below.

Problem:	1	2	3	4	5	6	Total
Value:	20	20	15	15	15	15	100
Grade:							

Problem 1.

When there are multiple choices in the following, select all statements that are true.

a) Is the union of a finite set of ellipses convex?

- Yes
- No
- Not enough information

b) Is the intersection of an ellipse and a polytope convex?

- Yes
- No
- Not enough information

c) If f is a convex function and x is a point such that $\nabla f(x) = 0$, then necessarily x is a

- local minimum of f
- global minimum of f
- global minimum of f if $\nabla^2 f(x) \succ 0$
- global minimum of f if $\nabla^2 f(x) \prec 0$

d) Let the set S be $\{(1, 1), (-1, 0), (0, 0), (-1, -1)\}$.

- The point $(-1/3, 0)$ is contained in the convex hull of S
- The point $(0, -1/3)$ is contained in the convex hull of S

e) Consider the nominal system $x^+ = f(x)$ and let S be a non-empty set such that $S \subseteq \text{pre}(S)$. Under which of the following conditions is S an invariant set of the uncertain system $y^+ = f(y) + w$ where w is restricted to lie in W ? (Note that the pre-set operator below refers to the nominal system)

- $S \subseteq \text{pre}(S \ominus W)$
- $S \oplus W \subseteq \text{pre}(S)$
- $S \subseteq \text{pre}(S)$
- $S \subseteq \text{pre}(S) \oplus W$

(Recall that \ominus is the Pontryagin difference, and \oplus is the Minkowski sum.)

f) The function $\cosh x = (e^x + e^{-x})/2$ is

- Convex
- Concave
- Neither convex nor concave
- Affine

g) On the domain $y > 0$, the function $-x^2/y$ is

- Convex
- Concave
- Neither convex nor concave
- Affine

h) The function $\max\{x + 4, 2x\}$ is

- Convex
- Concave
- Neither convex nor concave
- Affine

i) Consider the system $x^+ = -0.5x$. Which of the following sets are invariant?

- $\{x \mid x^4 \leq 5\}$
- $\{x \mid x^3 \leq 5\}$
- $\{x \mid -1 \leq x \leq 2\}$
- $\{x \mid -1/2 \leq x \leq 2\}$

j) Consider the system

$$\begin{pmatrix} x_1^+ \\ x_2^+ \end{pmatrix} = \begin{pmatrix} 0.5x_1 \\ 1.5x_2 \end{pmatrix}$$

Which of the following sets is invariant?

- $\{x \mid x_2 = 0, x_1 \leq 10\}$
- $\{x \mid x_1 = 0, x_2 \leq 10\}$
- $\{x \mid x_2 = x_1\}$

k) Consider the following predictive control problem, which defines the receding horizon control law $\pi(x)$

$$\min \sum_{i=0}^N x_i^T Q x_i + u_i^T R u_i$$

$$\text{s.t. } x_{i+1} = Ax_i + Bu_i$$

$$x_0 = x$$

Which of the following statements is true:

- The control law $\pi(x)$ is quadratic
- The control law $\pi(x)$ is linear
- If the closed-loop system is stable for $N = 5$, then it will be stable for $N = 6$
- The closed-loop system will be stable if $x^+ = Ax$ is unstable and $N \geq \text{rank}(A)$

l) Consider the following predictive control problem,

$$\min \sum_{i=0}^N x_i^T Q x_i + u_i^T R u_i$$

$$\text{s.t. } x_{i+1} = Ax_i + Bu_i$$

$$x_i \in X, u_i \in U$$

$$x_0 = x$$

Which of the following statements is true:

- The feasible set of the above optimization problem is larger for $N = 5$, than for $N = 4$
- If the closed-loop system is stable for $N = 5$, then it will be stable for $N = 6$
- If the MPC problem is recursively feasible for $N = 5$, then it will be for $N = 6$
- None of the above

m) What is the proximal operator $\text{prox}_{f,\rho}(v)$ of the function $f(x) = \|Ax - b\|_2^2$?

- v
- $Av - b$
- $(A^T A + \rho I)^{-1}(A^T b + v)$
- $(2A^T A + \rho I)^{-1}(2A^T b + \rho v)$

n) What is the proximal operator $\text{prox}_{f,\rho}(v)$ of the function

$$f(x) = \begin{cases} 0 & x = 0 \\ 0 & x = 1 \\ \infty & \text{otherwise} \end{cases}$$

- ρv
- v
- $\begin{cases} 0 & \text{if } v \leq 0.5 \\ 1 & \text{if } v > 0.5 \end{cases}$
- ∞

o) Let $f(x)$ be the indicator function for the convex set C . What is $\text{prox}_{f,\rho}(v)$ for a point $v \in C$?

- ρv
- v
- ρC
- ∞

p) Consider the standard (right) and soft-constrained (left) MPC problem formulations:

$$\begin{array}{ll}
 J_{\text{soft}}^*(x) = \min_u \sum_{i=0}^{N-1} I(x_i, u_i) + V_N(x_N) + \rho \sum_{i=0}^{N-1} \epsilon_i^T \epsilon_i & J^*(x) = \min_u \sum_{i=0}^{N-1} I(x_i, u_i) + V_N(x_N) \\
 \text{s.t. } x_{i+1} = Ax_i + Bu_i & \text{s.t. } x_{i+1} = Ax_i + Bu_i \\
 Gx_i \leq g + \epsilon_i & Gx_i \leq g \\
 Hu_i \leq h & Hu_i \leq h \\
 \epsilon_i \geq 0 &
 \end{array}$$

where the standard problem has been designed with appropriate terminal weights and constraints so that the resulting problem is recursively feasible and $J^*(x)$ is a Lyapunov function. Let Z be the set of states for which the standard problem is feasible, and $\pi_{\text{soft}}(x)$ the control law resulting from solving the soft-constrained problem. Which of the following conditions will be satisfied:

- $J_{\text{soft}}^*(x) \leq J^*(x)$ for all $x \in Z$
- $J_{\text{soft}}^*(Ax + B\pi_{\text{soft}}(x)) \leq J_{\text{soft}}^*(x)$ for all $x \in Z$
- $J_{\text{soft}}^*(Ax + B\pi_{\text{soft}}(x)) \leq J_{\text{soft}}^*(x)$ for all $x \notin Z$

q) Consider the MPC control law for the linear system $x^+ = Ax + Bu$

$$\begin{array}{l}
 \min \sum_{i=0}^N I(x_i, u_i) + x_N^T Px_N \\
 \text{s.t. } x_{i+1} = Ax_i + Bu_i \\
 x_i \in X, u_i \in U \\
 x_N \in X_f \\
 x_0 = x
 \end{array}$$

Where K is a matrix such that the set $X_f \subset X$ is invariant for $x^+ = (A + BK)x$, $KX_f \subset U$, and the function $I(x, u)$ is positive definite. Which of the following additional conditions will ensure asymptotic stability of the closed-loop system?

- $(A + BK)^T P(A + BK) - P \preceq 0$
- $x^T[(A + BK)^T P(A + BK) - P]x \leq -I(x, Kx)$ for all $x \in X_f$
- X_f is a control invariant set

r) Which of the following statements implies that $S = \{x \mid x^T Px \leq 1\}$, $P \succeq 0$ is an invariant set for the system $x^+ = Ax$?

- $A^T P A \succeq P$
- $A^T P A \preceq P$
- $A^T P A \succeq 0$
- $A^T P A \preceq 0$

Problem 2.

/20

Consider the following quadratically constrained quadratic program:

$$\begin{aligned} \min \quad & \frac{1}{2} x^T Q x + c^T x \\ \text{s.t.} \quad & x^T x \leq \alpha \end{aligned} \tag{1}$$

where $Q \succ 0$ is a positive definite matrix.

a) Barrier method

- i) Consider the barrier function $\phi(x) = -\sum_{i=1}^m \log(-g_i(x))$, where $g_i(x) \leq 0$ are the constraints of the problem. Compute the function $\phi(x)$, its gradient and its hessian for the optimization problem given above.
- ii) Compute the Newton direction for solving the centering step of the barrier interior-point method for the above problem.
- iii) Let $Q = I$, $c = (1 \ 2)^T$ and $\alpha = 3$. (1) Compute the Newton direction at the point $x = (1 \ 1)^T$ for a value of the barrier parameter $\kappa = 1$ and (2) demonstrate that the result is a decent direction.

b) Alternating Direction Method of Multipliers

$$\begin{aligned} & \min f(x) + g(y) \\ & \text{s.t. } Ax + By = b \end{aligned} \tag{2}$$

i) Give functions f , g and matrices A , B and b so that problem (2) is equivalent to (1).

Hint: You may want to use an indicator function.

ii) Give the three steps of the ADMM algorithm for the functions and data you gave in part i)

$$\begin{aligned} x^{k+1} &= \operatorname{argmin}_x f(x) + \frac{\rho}{2} \|Ax + By^k - b + \mu^k\|^2 \\ y^{k+1} &= \operatorname{argmin}_y g(y) + \frac{\rho}{2} \|Ax^{k+1} + By - b + \mu^k\|^2 \\ \mu^{k+1} &= \mu^k + Ax^{k+1} + By^{k+1} - b \end{aligned}$$

Problem 3.

/15

Consider the system $x^+ = Ax + Bu$ with the state constraint $x \in X$ and input constraint $u \in U$.

Let $C \subseteq X$ be a control invariant set for this system and consider the following MPC controller.

$$\begin{aligned} \min \quad & \sum_{i=0}^{N-1} x_i^T Q x_i + u_i^T R u_i \\ \text{s.t. } & x_1 \in C \\ & u_i \in U \quad i \in \{0, \dots, N-1\} \\ & x_i \in 2 \cdot X \quad i \in \{1, \dots, N\} \\ & x_{i+1} = Ax_i + Bu_i \end{aligned}$$

Is the resulting closed-loop system recursively feasible?

Yes No

If yes, then prove it. If no, then provide a counter-example.

Problem 4.

/15

Consider the linear system

$$x^+ = \begin{bmatrix} 0.5 & 0 \\ 4 & 0.8 \end{bmatrix} x + \begin{bmatrix} 0.3 & 0.2 \\ -0.6 & 0.9 \end{bmatrix} u$$

with constraints on the input $\|u\|_\infty \leq 1$.

a) What is the maximum control invariant set for this system? Justify your answer.

b) Consider the following standard MPC optimization problem, and let $\pi(x)$ be the resulting receding-horizon control law.

$$\min \sum_{i=0}^{N-1} x_i^T Q x_i + u_i^T R u_i + x_N^T Q_f x_N$$

$$\text{s.t. } x_{i+1} = Ax_i + Bu_i$$

$$u_i \in U \quad i \in \{0, \dots, N-1\}$$

$$x_N \in X_f$$

$$x_0 = x$$

Describe how to choose a terminal control law, K_f , terminal weight Q_f and terminal set X_f so that the closed-loop system $x^+ = Ax + B\pi(x)$ has a maximal invariant set equal to that given in Part a) and is asymptotically stable.

Problem 5.

/15

Consider the uncertain system $x^+ = \frac{1}{2}x + w$ under the state constraint $-10 \leq x \leq 10$ and subject to a disturbance bounded to lie in the set $|w| \leq 1$.

a) Give an algorithm to compute the minimum robust invariant set

b) Compute the minimum robust invariant set

Hint: $[a, b] \oplus [c, d] = [a + c, b + d]$

c) Give an algorithm to compute the maximum robust invariant set

d) Compute the maximum robust invariant set

Problem 6.

/15

Consider the following linear complementarity problem:

$$w - \begin{bmatrix} 5 & 7 \\ 7 & 10 \end{bmatrix} z = q \quad w^T z = 0 \quad w, z \geq 0$$

a) What is the solution to this LCP for $q = \bar{q} = [-1 \ 2]^T$?

b) Find a matrix T and a vector t such that $\begin{bmatrix} w \\ z \end{bmatrix} = Tq + t$ is the solution to the LCP in a neighbourhood of \bar{q}

c) Give the neighbourhood P in which the affine function you found in the last part is the solution to the LCP.